Models of random regular graphs

نویسنده

  • N. C. Wormald
چکیده

This is a survey of results on properties of random regular graphs, together with an exposition of some of the main methods of obtaining these results. Related results on asymptotic enumeration are also presented, as well as various generalisations to random graphs with given degree sequence. A major feature in this area is the small subgraph conditioning method. When applicable, this establishes a relationship between random regular graphs with uniform distribution, and non-uniform models of random regular graphs in which the probability of a graph G is weighted according to the number of subgraphs G has of a certain type. Information can be obtained in this way on the probability of existence of various types of spanning subgraphs, such as Hamilton cycles and decompositions into perfect matchings. Uniformly distributed labelled random regular graphs receive most of the attention, but also included are several non-uniform models which come about in a natural way. Some of these appear as spin-offs from the small subgraph conditioning method, and some arise from algorithms which use simple approaches to generating random regular graphs. A quite separate role played by algorithms is in the derivation of random graph properties by analysing the performance of an appropriate greedy algorithm on a random regular graph. Many open problems and conjectures are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD

In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of th...

متن کامل

OPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD

In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of the ...

متن کامل

Ising models on locally tree-like graphs

We consider Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the ‘cavity’ prediction for the limiting free energy per spin is correct for any temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) ...

متن کامل

k-planar Crossing Number of Random Graphs and Random Regular Graphs

We give an explicit extension of Spencer’s result on the biplanar crossing number of the ErdősRényi random graph G(n, p). In particular, we show that the k-planar crossing number of G(n, p) is almost surely Ω((np)). Along the same lines, we prove that for any fixed k, the k-planar crossing number of various models of random d-regular graphs is Ω((dn)) for d > c0 for some constant c0 = c0(k).

متن کامل

Calculation of 1RSB transition temperature of spin glass models on regular random graphs under the replica symmetric ansatz

Abstract. We study p-spin glass models on regular random graphs. By analyzing the Franz-Parisi potential with a two-body cavity field approximation under the replica symmetric ansatz, we obtain a good approximation of the 1RSB transition temperature for p = 3. Our calculation method is much easier than the 1RSB cavity method because the result is obtained by solving self-consistent equations wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008